Gamma Pricing Model

An equation for determining the fair market value of a European-style option when the price movement on the underlying asset does not resemble a normal distribution. The gamma pricing model is intended to price options where the underlying asset has a distribution that is either long-tailed or skewed, where dramatic market moves occur with greater frequency than would be predicted by a normal distribution of returns.

While the Black-Scholes option pricing model is the best known, it does not provide accurate pricing results under all situations. In particular, the Black-Scholes model assumes that the underlying instrument has returns that are normally distributed. As a result, the Black-Scholes will misprice options on instruments that do not trade based on a normal distribution. Many alternative options pricing methods have been developed with the goal of providing more accurate pricing for real-world applications such as the Gamma Pricing Model. Generally speaking, the Gamma Pricing Model measures the gamma, which is how much fast the delta changes with respect to small changes in the underlying asset's price.


Investment dictionary. . 2012.

Look at other dictionaries:

  • Constant Elasticity of Variance Model — In mathematical finance, the CEV or Constant Elasticity of Variance model is a stochastic volatility model, which attempts to capture stochastic volatility and the leverage effect. The model is widely used by practitioners in the financial… …   Wikipedia

  • Bass diffusion model — The Bass diffusion model was developed by Frank Bass and describes the process how new products get adopted as an interaction between users and potential users. The model is widely used in forecasting, especially product forecasting and… …   Wikipedia

  • Black–Scholes — The Black–Scholes model (pronounced /ˌblæk ˈʃoʊlz/[1]) is a mathematical model of a financial market containing certain derivative investment instruments. From the model, one can deduce the Black–Scholes formula, which gives the price of European …   Wikipedia

  • Option (finance) — Stock option redirects here. For the employee incentive, see Employee stock option. Financial markets Public market Exchange Securities Bond market Fixed income …   Wikipedia

  • Stable and tempered stable distributions with volatility clustering - financial applications — Classical financial models which assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the …   Wikipedia

  • Valuation of options — Further information: Option: Model implementation In finance, a price (premium) is paid or received for purchasing or selling options. This price can be split into two components. These are: Intrinsic Value Time Value Contents 1 Intrinsic Value 2 …   Wikipedia

  • Bellman equation — A Bellman equation (also known as a dynamic programming equation), named after its discoverer, Richard Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes… …   Wikipedia

  • Crank–Nicolson method — In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations.[1] It is a second order method in time, implicit in time, and is numerically …   Wikipedia

  • Marktpreisrisiko — Als Marktrisiko, Marktpreisrisiko oder Marktpreisänderungsrisiko bezeichnet man das Risiko finanzieller Verluste auf Grund der Änderung von Marktpreisen (z. B. Aktienkursen, Zinsen, Wechselkursen). In der Portfoliotheorie bezeichnet Marktrisiko… …   Deutsch Wikipedia

  • MibianLib — Developer(s) Yassine Maaroufi Stable release 0.1.1 / 19 November 2011; 0 days ago (2011 11 19) Development status Active Written in …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.